
Solitons in Biology

What Is a Soliton?
by Peter S. Lomdahl

A bout thirty years ago a remarkable discovery was made
here in Los Alamos. Enrico Fermi, John Pasta, and Stan
Ulam were calculating the flow of energy in a one-

dimensional lattice consisting of equal masses connected by nonlinear
springs. They conjectured that energy initially put into a long-
wavelength mode of the system would eventually be “thermalized,”
that is, be shared among all modes of the system. This conjecture was
based on the expectation that the nonlinearities in the system would
transfer energy into higher harmonic modes. Much to their surprise
the system did not thermalize but rather exhibited energy sharing
among the few lowest modes and long-time near recurrences of the
initial state.

This discovery remained largely a mystery until Norman Zabusky
and Martin Kruskal started to investigate the system again in the
early sixties. The fact that only the lowest order (long-wavelength)
modes of the discrete Fermi-Pasta-Ulam lattice were “active” led
them in a continuum approximation to the study of the nonlinear
partial differential equation

This equation (the KdV equation) had been derived in 1885 by
Korteweg and de Vries to describe long-wave propagation on shallow
water. But until recently its properties were not well understood.

From a detailed numerical study Zabusky and Kruskal found that
stable pulse-like waves could exist in a system described by the KdV
equation. A remarkable quality of these solitary waves was that they
could collide with each other and yet preserve their shapes and speeds
after the collision. This particle-like nature led Zabusky and Kruskal
to name such waves solitons. The first success of the soliton concept
was explaining the recurrence in the Fermi-Pasta-Ulam system. From
numerical solution of the KdV equation with periodic boundary
conditions (representing essentially a ring of coupled nonlinear

springs), Zabusky and Kruskal made the following observations. An
initial profile representing a long-wavelength excitation would “break
up” into a number of solitons, which would propagate around the

system with different speeds. The solitons would collide but preserve
their individual shapes and speeds. At some instant all of the solitons
would collide at the same point, and a near recurrence of the initial
profile would occur.

This success was exciting, of course, but the soliton concept proved
to have even greater impact. In fact, it stimulated very important
progress in the analytic treatment of initial-value problems for
nonlinear partial differential equations describing wave propagation.
During the past fifteen years a rather complete mathematical descrip-
tion of solitons has been developed. The amount of information on
nonlinear wave phenomena obtained through the fruitful collabora-
tion of mathematicians and physicists using this description makes
the soliton concept one of the most significant developments in
modern mathematical physics.

The nondispersive nature of the soliton solutions to the KdV
equation arises not because the effects of dispersion are absent but
because they are balanced by nonlinearities in the system. The
presence of both phenomena can be appreciated by considering
simplified versions of the KdV equation.

version

(2)

The most elementary wave solution of this equation is the harmonic
wave

(3)
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and k must satisfy the relation

(4)

Such a “dispersion relation” is a very handy algebraic description of a
linear system since it contains all the characteristics of the original
differential equation, Two important concepts connected with the

of constant phase is moving, while the group velocity measures how
fast the energy of the wave moves. The waves described by Eq. 2 are
said to be dispersive because a wave with large k will have larger
phase and group velocities than a wave with small k. Therefore, a
wave composed of a superposition of elementary components with
different wave numbers (different values of k in Eq. 3) will disperse, or
change its form. as it propagates.

equation

(5)

This simple nonlinear equation also admits wave solutions, but they

arbitrary. (That f(x - ut) is a solution of Eq. 5 is easily verified by
substitution.) For waves of this form, the important thing to note is
that the velocity of a point of constant displacement u is equal to that
displacement. As a result, the wave “breaks”; that is, portions of the
wave undergoing greater displacements move faster than, and there-
fore overtake, those undergoing smaller displacements, This multi-
valuedness is a result of the nonlinearity and, like dispersion, leads to
a change in form as the wave propagates.

A remarkable property of the KdV equation is that dispersion and
nonlinearity balance each other and allow wave solutions that
propagate without changing form (Fig. 1), An example of such a
solution is

(6)

where the velocity c can take any positive value. This is the one-
soliton solution of the KdV equation.

Although our discussion may have provided some glimpse of the
interplay between dispersion and nonlinearity in the KdV equation, it
has not. of course, provided any explanation of how solitons preserve

their shapes and speeds after collision. This particle-like property is
more than just a mere curiosity; it is of deep mathematical
significance, A full understanding of this property requires an ex-
tensive mathematical discussion that we will not attempt here. We
mention, however, that not all nonlinear partial differential equations
have soliton solutions. Those that do are generic and belong to a class
for which the general initial-value problem can be solved by a
technique called the inverse scattering transform, a brilliant scheme
developed by Kruskal and his coworkers in 1967. With this method,
which can be viewed as a generalization of the Fourier transform to
nonlinear equations, general solutions can be produced through a
series of linear calculations. During the solution process it is possible
to identify new nonlinear modes—generalized Fourier modes—that
are the soliton components of the solution and, in addition, modes
that are purely dispersive and therefore often called radiation.
Equations that can be solved by the inverse scattering transform are
said to be completely integrable.

The manifestation of balance between dispersion and nonlinearity
can be quite different from system to system. Other equations thus
have soliton solutions that are distinct from the bell-shaped solitons of
the KdV equation. An example is the so-called nonlinear Schrodinger
(NLS) equation. This equation is generic to all conservative systems
that are weakly nonlinear but strongly dispersive. It describes the
slow temporal and spatial evolution of the envelope of an almost
monochromatic wave train. We present here a heuristic derivation of
the NLS equation that shows how it is the natural equation for the
evolution of a carrier-wave envelope. Consider a dispersion relation
for a harmonic wave that is amplitude dependent:

(7)

Here E = E(x,t) is the slowly varying envelope function of a

situation described by Eq. 7 occurs, for example. in nonlinear optical
phenomena, where the dielectric constant of the medium depends on
the intensity of the electric signal. Other examples include surface
waves on deep water, electrostatic plasma waves, and bond-energy

transport in proteins.

(8)
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This is the nonlinear Schrodinger equation, so called because of its
resemblance to the Schrodinger equation even though its derivation
often has nothing to do with quantum mechanics. The first term of
Eq. 9 represents undistorted propagation of the wave at the group
velocity. and the second and third terms represent its linear and
nonlinear distortion. respectively. This crude derivation of the NLS
equation shows how it arises in systems with amplitude-dependent
dispersion relations. but more formal methods are necessary if detail

It is often preferable to express Eq. 9 in a neater form. For this

to

where

(lo)

Fig. 2. Profile of a single-soliton solution of the NLS equation.

(11)

The NLS equation—like the KdV equation—is completely inte-
grable and has soliton solutions. The analytic form for a single-soliton
solution is given by

amplitude, initial position, and initial phase, respectively, of the
soliton. Figure 2 shows the profile of this soliton.

Any initial excitation for the NLS equation will decompose into
solitons and/or dispersive radiation. A monochromatic wave train

tion and breaks up into separate and localized solitons. This phenom-
enon is called the Benjamin-Feir instability and is well known to any
surfer on the beach who has noticed that every, say, seventh wave is
the largest. The NLS equation is in a way more universal than the
KdV equation since an almost monochromatic, small-amplitude
solution of the KdV equation will evolve according to the NLS
equation.

The last type of soliton we mention, which is distinctly different
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of such “degenerate ground states” also allow solutions that connect
two neighboring ground states. Solutions of this type are often called
kinks, and for the sine-Gordon equation they are exact solitons; that
is, they collide elastically without generation of dispersive radiation.
The analytic form, whose profile is shown in Fig. 3, is given by

(14)

where the solution u– is often called an antikink. The parameter

c (–1 < c < 1) determines the velocity and XO the initial position,

Other equations with degenerate ground states also have kink and
antikink solutions, but they are not exact solitons like those of the
sine-Gordon equation. It is interesting to note that small-amplitude
solutions of the sine-Gordon equation also can be shown to evolve

according to the NLS equation.
Equations with soliton solutions are generic, and, although real

systems often contain mechanisms (impurities, dissipative forces, and
multidimensionality) that destroy exact soliton behavior, they are
very useful as a starting point for analysis. In fact, perturbation
methods—with the perturbation taking place around the soli-
ton—have been developed to compute the response of the soliton to
external forces, damping, etc. Often the result is that the parameters
characterizing the soliton (such as velocity and amplitude) are now
time dependent, with the time dependence governed by simple
ordinary differential equations. The original equations are therefore
still very useful. Because the mechanisms that give rise to soliton
equations are so prevalent, the suggestion that solitons might arise in
biology is not so surprising. The question to be asked is how well a
particular biological system satisfies the criteria underlying the soliton
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